Concept Review

1. True FALSE In order for $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, we need $a \leq c \leq b$.

Solution: This is true for all c.
2. TRUE False The area underneath a PDF must be equal to 1 .

Solution: This is because the probability of anything happening is 1 .
3. TRUE False The second derivative can tell us if the midpoint rule gives an over/under estimate.

Solution: If the second derivative is always positive, then the midpoint rule gives an overestimate, and if the second derivative is always negative, the midpoint rule gives an underestimate.
4. TRUE False The crown of calculus is the fundamental theorem of calculus.
5. TRUE False It is always good to u sub first in order to simplify the integral.

Solution: This is true and u subbing first will make your life a lot easier.
6. TRUE False Simpson's method will approximate cubics exactly.

Solution: The error bound is given by K_{4}, which is the maximum of the fourth derivative. Since the fourth derivative of cubics is 0 , the error is 0 .
7. True FALSE Simpson's method will approximate piecewise linear functions exactly.

Solution: It may fail if the function is only piecewise linear. For example, it fails on $|x|$.
8. True FALSE When solving a separable equation, if we get that $y d y=x d x$, then the solution is $y=x+C$.

Solution: Solving gives $y^{2} / 2=x^{2} / 2+C$ and multiplying by two and square rooting gives $y=\sqrt{x^{2}+2 C}$, which is not the same as $y=x+C$.
9. True FALSE We can compare an integral to $\int_{1}^{\infty} 1 / \sqrt{x} d x$ in order to show it converges.

Solution: The given integral diverges and hence cannot be used to show an integral converges.
10. TRUE False The bars of a histogram can have a height greater than 1.

Solution: If all of the data falls within an interval of 0.1 , then the height of that bar is $1 / 0.1=10$.
11. True FALSE For a continuous PDF $f(x)$. The value $f(0)$ represents the probability of choosing 0 .

Solution: The actual numerical value of $f(0)$ doesn't mean anything and more useful as a comparison, for example when comparing $f(0)$ and $f(1)$.

